
I. HILBERT SPACE

Definition 1. Let X be a complex vector space, (thus X is closed under addition

and complex scalar multiplication),a function 〈·, ·〉 : X ×X → C is called an inner

product on X, if the following properties are satisfied:

(i)Positivity: 〈u, u〉 > 0 for each nonzero u ∈ X;

(ii)Conjugate symmetry: 〈u, v〉 = 〈v, u〉 for all u, v ∈ X;

(iii)Homogeneity: 〈cv, u〉 = c〈v, u〉 for all u, v ∈ X and scalar c ∈ C;

(iv) Additivity: 〈u + v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ X.

Example The space of all square integrable functions defined on the the interval

[−π, π] is usually denoted as L2([−π, π]). More specifically, we denote

L2([−π, π]) = {f : [−π, π] → C |
∫ π

−π

|f(t)|2dt < ∞}.

We can define inner product on it as

〈f, g〉L2([−π,π]) =
1
2π

∫ π

−π

f(t)g(t)dt

for f, g ∈ L2([−π, π]).

Remark By Hölder’s inequality, for any f, g ∈ L2([−π, π]), we have

(
∫ π

−π

|f(t)g(t)|dt)2 ≤
∫ π

−π

|f(t)|2dt

∫ π

−π

|g(t)|2dt,

Hence the inner product defined above makes sense.

In general, if 〈·, ·〉 : X ×X → C is an inner product defined on X,then

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉.

This is usually called Cauchy-Schwartz Inequality.
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2 I. HILBERT SPACE

Definition 2. Let X be a complex vector space on which an inner product 〈·, ·〉 :

X × X → C is defined (such spaces are called inner-product spaces). The norm

|| · || on X induced by the inner product can define as ||x|| = 〈x, x〉2. It can be

checked using the properties of inner product and Cauchy-Schwartz Inequality that

|| · || satisfies the following

(i)||x|| = 0 if and only if x = 0 for all x ∈ X;

(ii)||cx|| = |c| · ||x|| for all x ∈ X and c ∈ C;

(iii)||x + y|| ≤ ||x||+ ||y|| for all x, y ∈ X;

Remark The last property above is usually called Triangle Inequality.

The properties (i),(iii) enjoyed by the norm remind one about absolute value of

real numbers. Indeed, the ”distance” between two elements in X can be measured

by the norm of their difference. In particular, we can talk about Cauchy sequence

and convergence of a sequence of elements {xn}n∈N ⊂ X.

Definition 3. . Let X be a complex vector space on which an inner product is

defined. Let || · || be the norm on X induced by the inner product. We say that a

sequence of elements {xn}n∈N ⊂ X converges to x ∈ X under the norm || · ||, if

the sequence {||xn − x||}n∈N of real numbers converges to 0, i.e., for any ε > 0,

there is N ∈ N, such that for any natural number n > N , we have ||xn − x|| < ε.

Likewise, We say that the series
∑∞

n=1 xn converges in X (or summable ), if

its partial sum sequence {∑n
i=1 xi}n∈N converges to some x ∈ X.

Remark It can be checked that whenever a sequence of elements {xn}n∈N ⊂ X

converges to x ∈ X under the norm || · ||, then {xn}n∈N satisfies the following

property:

For any ε > 0, there is N ∈ N, such that for any natural number m,n > N , we

have ||xn − xm|| < ε.

Any {xn}n∈N ∈ X satisfying the the property above is called a Cauchy Se-

quence in X under the norm || · ||.
Whenever there is no ambiguity about norm we refer to in the context, we usually

omit the phrase ”under the norm || · ||”.

Now we are ready to introduce the notion of a Hilbert Space.

Definition 4. . Let X be a complex vector space on which an inner product is

defined. Let || · || be the norm on X induced by the inner product. We say that X

is a (complex) Hilbert space if every Cauchy sequence in X converges to some

x ∈ X.
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Example The space L2([−π, π]) mentioned above is a Hilbert space. The norm

induced by the inner product 〈f, g〉L2([−π,π]) is

||f ||L2([−π,π]) =
1√
2π

(
∫ π

−π

|f(t)|2dt)
1
2

for all f ∈ L2([−π, π]).

Example We use Z to denote the set of all integers. Define

l2(Z) = {f : Z→ C |
∑

k∈Z
|f(k)|2 < ∞}.

If the inner product on l2(Z) is defined as

〈f, g〉l2(Z) =
∑

k∈Z
f(k)g(k),

then l2(Z) becomes a Hilbert space (with the norm induced by the above defined

inner product).

More often (and much more conveniently), the Hilbert space l2(Z) is represented

as a space of ”sequences”:

l2(Z) = {{ak}k∈Z ⊂ C |
∑

k∈Z
|ak|2 < ∞}.

With such a representation, the inner product defined above has the following

form:

For any elements a = {ak}k∈Z, b = {bk}k∈Z in l2(Z),

〈a, b〉l2(Z) =
∑

k∈Z
akbk.

In some sense, l2(Z) is the simplest among all infinite dimensional Hilbert Space.

We will try to show how Hilbert spaces in general, L2([−π, π]) in particular, is

related to l2(Z). Let us introduce the notion of orthogonality first. (the rest of this

section is mainly taken from Katznelson’s An introduction to Harmonic Analysis.)

Definition 5. Let H be a complex Hilbert space. Let f, g ∈ H. We say that f is

orthogonal to g if 〈f, g〉 = 0. This relation is clearly symmetric. If E is a subset

of H, we say that f ∈ H is orthogonal to E if f is orthogonal to every element

in E. A set E ⊂ H is orthogonal if any two vectors in E are orthogonal to each

other. A set E ⊂ H is an orthonormal system if it is orthogonal and the norm
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of each vector in E is one, that is, if, whenever f, g ∈ E, 〈f, g〉 = 0 if f 6= g and

〈f, f〉 = 1.

Lemma 1. Let {ϕn}N
n=1 be a finite orthonormal system in Hilbert space H. Let

a1, ..., aN be complex numbers. Then

||
N∑

n=1

anϕn||2 =
N∑

n=1

|an|2.

Proof.

||
N∑

n=1

anϕn||2 = 〈
N∑

n=1

anϕn,
N∑

n=1

anϕn〉 =
N∑

n=1

an〈ϕn,
N∑

n=1

amϕm〉

=
N∑

n=1

anan =
N∑

n=1

|an|2

¤

Corollary 1. Let {ϕn}∞n=1 be an orthonormal system in Hilbert space H. Let

{an}∞n be a sequence of complex numbers such that
∑∞

n |an|2 < ∞ . Then
∑∞

n=1 anϕn

converges in H.

Proof. Since H is a Hilbert space, every Cauchy sequence in H converges to some

vector inH. Therefore all we have to show is that the partial sums SN =
∑N

n=1 anϕn

form a Cauchy sequence in H.

Now, by Lemma 1, for N > M ,

||SN − SM ||2 = ||
N∑

n=M+1

anϕn||2 =
N∑

n=M+1

|an|2.

The rest is routine.

¤

Lemma 2. Let {ϕn}N
n=1 be a finite orthonormal system in Hilbert space H. For

f ∈ H, let an = 〈f, ϕn〉. Then

0 ≤ ||f −
N∑

n=1

anϕn||2 = ||f ||2 −
N∑

n=1

|an|2.

Proof.

||f −
N∑

n=1

anϕn||2 = 〈f −
N∑

n=1

anϕn, f −
N∑

n=1

anϕn
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= ||f ||2 −
N∑

n=1

an〈f, ϕn〉 −
N∑

n=1

an〈ϕn, f〉+
N∑

n=1

|an|2 = ||f ||2 −
N∑

n=1

|an|2.

¤

Corollary 2. Bessel’s Inequality Let {ϕn}∞n=1 be an orthonormal system in

Hilbert space H. Then for any f ∈ H, we have

∞∑
n=1

|〈f, ϕn〉|2 ≤ ||f ||2.

Bessel’s inequalty is an easy consequence of Lemma 2, we omit the proof. For

any orthonormal system{ϕn}∞n=1 in Hilbert space H and any sequence of complex

numbers {an}∞n , when
∑∞

n=1 anϕn converges in H to some f ∈ H, namely, the

partial sum sequence {∑n
i=1 aiϕi}∞n=1 converges to f ∈ H, we write

f =
∞∑

n=1

anϕn.

Next we show an important consequence of Cauchy-Schwartz inequality.

Lemma 3. Let {ϕn}∞n=1 be an orthonormal system in Hilbert space H, {an}∞n be

a sequence of complex numbers {an}∞n . If f =
∑∞

n=1 anϕn, then for any g ∈ H, we

have

〈f, g〉 =
∞∑

n=1

an〈ϕn, g〉.

Proof. We need to show that the series of complex numbers
∑∞

n=1 an〈ϕn, g〉 con-

verges to the complex number 〈f, g〉.
Now

| 〈f, g〉 −
N∑

n=1

an〈ϕn, g〉 |=| 〈f −
N∑

n=1

anϕn, g〉 |≤ ||f −
N∑

n=1

anϕn|| 12 ||g|| 12

where the last inequality is Cauchy-Schwartz inequality.

The rest of the proof is routine. ¤

Definition 6. A complete orthonormal systemin H is an orthonormal system

having the additional property that the only vector in H orthogonal to it is the zero

vector.
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Lemma 4. Let {ϕn}∞n=1 be an orthonormal system in Hilbert space H. Then the

following statements are equivalent:

(a) {ϕn}∞n=1 is complete.

(b) For every f ∈ H we have

||f ||2 =
∞∑

n=1

|〈f, ϕn〉|2.

(c) For every f ∈ H we have

f =
∞∑

n=1

|〈f, ϕn〉ϕn.

Proof.

To prove (b)⇐⇒(c), we only need to look at Lemma 2. Details are left to the

reader.

To prove (b)=⇒ (a), assuming vector f is orthogonal to {ϕn}∞n=1, then by (b)

we see that ||f || = 0 which means f = 0, hence {ϕn}∞n=1 is complete.

Lastly, we show (a)=⇒(c).

Since
∑∞

n=1 |〈f, ϕn〉|2 ≤ ||f ||2 by Bessel’s inequality, according to Corollary 1,

we see that
∑∞

n=1〈f, ϕn〉ϕn converges in H. Let us denote g =
∑∞

n=1〈f, ϕn〉ϕn,

we are done if we can show f = g. Indeed, using Lemma 3, we compute to get

〈g, ϕn〉 = 〈f, ϕn〉 for each n ∈ N. This means 〈g − f, ϕn〉 = 0 for each n ∈ N. Since

{ϕn}∞n=1 is complete, it follows from definition that g − f = 0.

¤

Corollary 3. Parseval’s Identity Let {ϕn}∞n=1 be acomplete orthonormal system

in Hilbert space H, let f, g ∈ H. Then

〈f, g〉 =
∞∑

n=1

〈f, ϕn〉〈ϕn, g〉.

Parseval’s Identity is an easy consequence of Lemma 3 and Lemma 4, we leave

the proof for the reader. Now we turn to the concrete Hilbert space L2([−π, π]).

Consider {eint}n∈Z ⊂ L2([−π, π]), since

〈eint, eimt〉L2([−π,π]) =
1
2π

∫ π

−π

einteimtdt =
1
2π

∫ π

−π

ei(n−m)tdt = δn,m.

clearly {eint}n∈Z is an orthonormal system in L2([−π, π]). In fact it is also complete,

but the proof of its completeness is beyond the scope of this course. The general

results about complete orthonormal systems in Hilbert space now yield
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Theorem 1. For any f ∈ L2([−π, π]), denote 〈f, eint〉 = 1
2π

∫ π

−π
f(t)eimtdt = f̂(n)

for each n ∈ Z. Then

(a)
1
2π

∫ π

−π

|f(t)|2dt =
∑

n∈Z
|f̂(n)|2.

(b)

f =
∑

n∈Z
f̂(n)eint

where the convergence is in the norm of L2([−π, π]).

(c) Given any sequence {an}n∈Z satisfying
∑

n∈z |an|2 < ∞, there is a unique

f ∈ L2([−π, π]) such that an = f̂(n) for each n ∈ Z.

(d) For any f, g ∈ L2([−π, π]), we have

1
2π

∫ π

−π

f(t)g(t)dt =
∑

n∈Z
f̂(n)ĝ(n).

This brings the saga to an end.

The proof is mostly trivial. We omit the proof, only to mention that to prove

(c), by Corollary 1 we can first write f =
∑

n∈Z aneint, then by using Lemma 3 and

the fact that {eint}n∈Z is complete, we can prove the uniqueness part.

Remark The above theorem shows that L2([−π, π]) and l2(Z) can be ”identi-

fied” in certain sense through the correspondence f ←→ {f̂(n)}, mathematically it

is called an isometry but we will not get into the that.


