I. HILBERT SPACE

Definition 1. Let X be a complex vector space, (thus X is closed under addition and complex scalar multiplication), a function $\langle \cdot, \cdot \rangle : X \times X \to C$ is called an inner product on X, if the following properties are satisfied:

(i)Positivity: $\langle u, u \rangle > 0$ for each nonzero $u \in X$; (ii)Conjugate symmetry: $\overline{\langle u, v \rangle} = \langle v, u \rangle$ for all $u, v \in X$; (iii)Homogeneity: $\langle cv, u \rangle = c \langle v, u \rangle$ for all $u, v \in X$ and scalar $c \in C$; (iv) Additivity: $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ for all $u, v, w \in X$.

Example The space of all square integrable functions defined on the the interval $[-\pi,\pi]$ is usually denoted as $L^2([-\pi,\pi])$. More specifically, we denote

$$L^{2}([-\pi,\pi]) = \{ f : [-\pi,\pi] \to \mathbb{C} \mid \int_{-\pi}^{\pi} |f(t)|^{2} dt < \infty \}.$$

We can define inner product on it as

$$\langle f,g \rangle_{L^2([-\pi,\pi])} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$$

for $f, g \in L^2([-\pi, \pi])$.

Remark By Hölder's inequality, for any $f, g \in L^2([-\pi, \pi])$, we have

$$(\int_{-\pi}^{\pi} |f(t)g(t)|dt)^2 \le \int_{-\pi}^{\pi} |f(t)|^2 dt \int_{-\pi}^{\pi} |g(t)|^2 dt,$$

Hence the inner product defined above makes sense.

In general, if $\langle\cdot,\cdot\rangle:X\times X\to C$ is an inner product defined on X, then

$$|\langle u, v \rangle|^2 \le \langle u, u \rangle \cdot \langle v, v \rangle.$$

This is usually called **Cauchy-Schwartz Inequality**.

Definition 2. Let X be a complex vector space on which an inner product $\langle \cdot, \cdot \rangle : X \times X \to C$ is defined (such spaces are called inner-product spaces). The **norm** $|| \cdot ||$ on X induced by the inner product can define as $||x|| = \langle x, x \rangle^2$. It can be checked using the properties of inner product and Cauchy-Schwartz Inequality that $|| \cdot ||$ satisfies the following

 $\begin{aligned} &(i)||x|| = 0 \ if \ and \ only \ if \ x = 0 \ for \ all \ x \in X; \\ &(ii)||cx|| = |c| \cdot ||x|| \ for \ all \ x \in X \ and \ c \in C; \\ &(iii)||x + y|| \le ||x|| + ||y|| \ for \ all \ x, y \in X; \end{aligned}$

Remark The last property above is usually called **Triangle Inequality**.

The properties (i),(iii) enjoyed by the norm remind one about *absolute value* of real numbers. Indeed, the "distance" between two elements in X can be measured by the norm of their difference. In particular, we can talk about Cauchy sequence and convergence of a sequence of elements $\{x_n\}_{n \in N} \subset X$.

Definition 3. Let X be a complex vector space on which an inner product is defined. Let $|| \cdot ||$ be the norm on X induced by the inner product. We say that a sequence of elements $\{x_n\}_{n \in N} \subset X$ converges to $x \in X$ under the norm $|| \cdot ||$, if the sequence $\{||x_n - x||\}_{n \in N}$ of real numbers converges to 0, i.e., for any $\epsilon > 0$, there is $N \in \mathbb{N}$, such that for any natural number n > N, we have $||x_n - x|| < \epsilon$.

Likewise, We say that the series $\sum_{n=1}^{\infty} x_n$ converges in X (or summable), if its partial sum sequence $\{\sum_{i=1}^{n} x_i\}_{n \in N}$ converges to some $x \in X$.

Remark It can be checked that whenever a sequence of elements $\{x_n\}_{n \in N} \subset X$ converges to $x \in X$ under the norm $|| \cdot ||$, then $\{x_n\}_{n \in N}$ satisfies the following property:

For any $\epsilon > 0$, there is $N \in \mathbb{N}$, such that for any natural number m, n > N, we have $||x_n - x_m|| < \epsilon$.

Any $\{x_n\}_{n \in \mathbb{N}} \in X$ satisfying the property above is called a **Cauchy Sequence** in X under the norm $|| \cdot ||$.

Whenever there is no ambiguity about norm we refer to in the context, we usually omit the phrase "under the norm $|| \cdot ||$ ".

Now we are ready to introduce the notion of a **Hilbert Space**.

Definition 4. Let X be a complex vector space on which an inner product is defined. Let $|| \cdot ||$ be the norm on X induced by the inner product. We say that X is a (complex) Hilbert space if every Cauchy sequence in X converges to some $x \in X$.

I. HILBERT SPACE

Example The space $L^2([-\pi,\pi])$ mentioned above is a Hilbert space. The norm induced by the inner product $\langle f,g \rangle_{L^2([-\pi,\pi])}$ is

$$||f||_{L^2([-\pi,\pi])} = \frac{1}{\sqrt{2\pi}} \left(\int_{-\pi}^{\pi} |f(t)|^2 dt \right)^{\frac{1}{2}}$$

for all $f \in L^2([-\pi,\pi])$.

Example We use \mathbb{Z} to denote the set of all integers. Define

$$l^2(\mathbb{Z}) = \{f : \mathbb{Z} \to \mathbb{C} \mid \sum_{k \in \mathbb{Z}} |f(k)|^2 < \infty\}.$$

If the inner product on $l^2(\mathbb{Z})$ is defined as

$$\langle f,g\rangle_{l^2(\mathbb{Z})} = \sum_{k\in\mathbb{Z}} f(k)\overline{g(k)},$$

then $l^2(\mathbb{Z})$ becomes a Hilbert space (with the norm induced by the above defined inner product).

More often (and much more conveniently), the Hilbert space $l^2(\mathbb{Z})$ is represented as a space of "sequences":

$$l^{2}(\mathbb{Z}) = \{\{a_{k}\}_{k \in \mathbb{Z}} \subset \mathbb{C} \mid \sum_{k \in \mathbb{Z}} |a_{k}|^{2} < \infty\}.$$

With such a representation, the inner product defined above has the following form:

For any elements $a = \{a_k\}_{k \in \mathbb{Z}}, b = \{b_k\}_{k \in \mathbb{Z}}$ in $l^2(\mathbb{Z})$,

$$\langle a,b\rangle_{l^2(\mathbb{Z})} = \sum_{k\in\mathbb{Z}} a_k \overline{b_k}.$$

In some sense, $l^2(\mathbb{Z})$ is the simplest among all infinite dimensional Hilbert Space. We will try to show how Hilbert spaces in general, $L^2([-\pi,\pi])$ in particular, is related to $l^2(\mathbb{Z})$. Let us introduce the notion of *orthogonality* first. (the rest of this section is mainly taken from Katznelson's An introduction to Harmonic Analysis.)

Definition 5. Let \mathcal{H} be a complex Hilbert space. Let $f, g \in \mathcal{H}$. We say that f is **orthogonal** to g if $\langle f, g \rangle = 0$. This relation is clearly symmetric. If E is a subset of \mathcal{H} , we say that $f \in \mathcal{H}$ is **orthogonal** to E if f is orthogonal to every element in E. A set $E \subset \mathcal{H}$ is **orthogonal** if any two vectors in E are orthogonal to each other. A set $E \subset \mathcal{H}$ is an **orthonormal system** if it is orthogonal and the norm

I. HILBERT SPACE

of each vector in E is one, that is, if, whenever $f, g \in E$, $\langle f, g \rangle = 0$ if $f \neq g$ and $\langle f, f \rangle = 1$.

Lemma 1. Let $\{\varphi_n\}_{n=1}^N$ be a finite orthonormal system in Hilbert space \mathcal{H} . Let $a_1, ..., a_N$ be complex numbers. Then

$$||\sum_{n=1}^{N} a_n \varphi_n||^2 = \sum_{n=1}^{N} |a_n|^2.$$

Proof.

$$||\sum_{n=1}^{N} a_n \varphi_n||^2 = \langle \sum_{n=1}^{N} a_n \varphi_n, \sum_{n=1}^{N} a_n \varphi_n \rangle = \sum_{n=1}^{N} a_n \langle \varphi_n, \sum_{n=1}^{N} a_m \varphi_m \rangle$$
$$= \sum_{n=1}^{N} a_n \overline{a}_n = \sum_{n=1}^{N} |a_n|^2$$

Corollary 1. Let $\{\varphi_n\}_{n=1}^{\infty}$ be an orthonormal system in Hilbert space \mathcal{H} . Let $\{a_n\}_n^{\infty}$ be a sequence of complex numbers such that $\sum_n^{\infty} |a_n|^2 < \infty$. Then $\sum_{n=1}^{\infty} a_n \varphi_n$ converges in \mathcal{H} .

Proof. Since \mathcal{H} is a Hilbert space, every Cauchy sequence in \mathcal{H} converges to some vector in \mathcal{H} . Therefore all we have to show is that the partial sums $S_N = \sum_{n=1}^N a_n \varphi_n$ form a Cauchy sequence in \mathcal{H} .

Now, by Lemma 1, for N > M,

$$||S_N - S_M||^2 = ||\sum_{n=M+1}^N a_n \varphi_n||^2 = \sum_{n=M+1}^N |a_n|^2.$$

The rest is routine.

Lemma 2. Let $\{\varphi_n\}_{n=1}^N$ be a finite orthonormal system in Hilbert space \mathcal{H} . For $f \in \mathcal{H}$, let $a_n = \langle f, \varphi_n \rangle$. Then

$$0 \le ||f - \sum_{n=1}^{N} a_n \varphi_n||^2 = ||f||^2 - \sum_{n=1}^{N} |a_n|^2.$$

Proof.

$$||f - \sum_{n=1}^{N} a_n \varphi_n||^2 = \langle f - \sum_{n=1}^{N} a_n \varphi_n, f - \sum_{n=1}^{N} a_n \varphi_n$$

$$= ||f||^{2} - \sum_{n=1}^{N} \overline{a}_{n} \langle f, \varphi_{n} \rangle - \sum_{n=1}^{N} a_{n} \langle \varphi_{n}, f \rangle + \sum_{n=1}^{N} |a_{n}|^{2} = ||f||^{2} - \sum_{n=1}^{N} |a_{n}|^{2}.$$

Corollary 2. Bessel's Inequality Let $\{\varphi_n\}_{n=1}^{\infty}$ be an orthonormal system in Hilbert space \mathcal{H} . Then for any $f \in \mathcal{H}$, we have

$$\sum_{n=1}^{\infty} |\langle f, \varphi_n \rangle|^2 \le ||f||^2$$

Bessel's inequality is an easy consequence of Lemma 2, we omit the proof. For any orthonormal system $\{\varphi_n\}_{n=1}^{\infty}$ in Hilbert space \mathcal{H} and any sequence of complex numbers $\{a_n\}_n^{\infty}$, when $\sum_{n=1}^{\infty} a_n \varphi_n$ converges in \mathcal{H} to some $f \in \mathcal{H}$, namely, the partial sum sequence $\{\sum_{i=1}^n a_i \varphi_i\}_{n=1}^{\infty}$ converges to $f \in \mathcal{H}$, we write

$$f = \sum_{n=1}^{\infty} a_n \varphi_n$$

Next we show an important consequence of Cauchy-Schwartz inequality.

Lemma 3. Let $\{\varphi_n\}_{n=1}^{\infty}$ be an orthonormal system in Hilbert space \mathcal{H} , $\{a_n\}_n^{\infty}$ be a sequence of complex numbers $\{a_n\}_n^{\infty}$. If $f = \sum_{n=1}^{\infty} a_n \varphi_n$, then for any $g \in \mathcal{H}$, we have

$$\langle f,g\rangle = \sum_{n=1}^{\infty} a_n \langle \varphi_n,g \rangle.$$

Proof. We need to show that the series of complex numbers $\sum_{n=1}^{\infty} a_n \langle \varphi_n, g \rangle$ converges to the complex number $\langle f, g \rangle$.

Now

$$|\langle f,g \rangle - \sum_{n=1}^{N} a_n \langle \varphi_n,g \rangle |=|\langle f - \sum_{n=1}^{N} a_n \varphi_n,g \rangle |\leq ||f - \sum_{n=1}^{N} a_n \varphi_n||^{\frac{1}{2}} ||g||^{\frac{1}{2}}$$

where the last inequality is Cauchy-Schwartz inequality.

The rest of the proof is routine. \Box

Definition 6. A complete orthonormal system in \mathcal{H} is an orthonormal system having the additional property that the only vector in \mathcal{H} orthogonal to it is the zero vector.

Lemma 4. Let $\{\varphi_n\}_{n=1}^{\infty}$ be an orthonormal system in Hilbert space \mathcal{H} . Then the following statements are equivalent:

- (a) $\{\varphi_n\}_{n=1}^{\infty}$ is complete.
- (b) For every $f \in \mathcal{H}$ we have

$$||f||^2 = \sum_{n=1}^{\infty} |\langle f, \varphi_n \rangle|^2.$$

(c) For every $f \in \mathcal{H}$ we have

$$f = \sum_{n=1}^{\infty} |\langle f, \varphi_n \rangle \varphi_n.$$

Proof.

To prove $(b) \iff (c)$, we only need to look at Lemma 2. Details are left to the reader.

To prove (b) \implies (a), assuming vector f is orthogonal to $\{\varphi_n\}_{n=1}^{\infty}$, then by (b) we see that ||f|| = 0 which means f = 0, hence $\{\varphi_n\}_{n=1}^{\infty}$ is complete.

Lastly, we show (a) \Longrightarrow (c).

Since $\sum_{n=1}^{\infty} |\langle f, \varphi_n \rangle|^2 \leq ||f||^2$ by Bessel's inequality, according to Corollary 1, we see that $\sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \varphi_n$ converges in \mathcal{H} . Let us denote $g = \sum_{n=1}^{\infty} \langle f, \varphi_n \rangle \varphi_n$, we are done if we can show f = g. Indeed, using Lemma 3, we compute to get $\langle g, \varphi_n \rangle = \langle f, \varphi_n \rangle$ for each $n \in \mathbb{N}$. This means $\langle g - f, \varphi_n \rangle = 0$ for each $n \in \mathbb{N}$. Since $\{\varphi_n\}_{n=1}^{\infty}$ is complete, it follows from definition that g - f = 0.

Corollary 3. Parseval's Identity Let $\{\varphi_n\}_{n=1}^{\infty}$ be a complete orthonormal system in Hilbert space \mathcal{H} , let $f, g \in \mathcal{H}$. Then

$$\langle f,g\rangle = \sum_{n=1}^{\infty} \langle f,\varphi_n \rangle \langle \varphi_n,g \rangle$$

Parseval's Identity is an easy consequence of Lemma 3 and Lemma 4, we leave the proof for the reader. Now we turn to the concrete Hilbert space $L^2([-\pi,\pi])$. Consider $\{e^{int}\}_{n\in\mathbb{Z}} \subset L^2([-\pi,\pi])$, since

$$\langle e^{int}, e^{imt} \rangle_{L^2([-\pi,\pi])} = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{int} \overline{e^{imt}} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-m)t} dt = \delta_{n,m}.$$

clearly $\{e^{int}\}_{n\in\mathbb{Z}}$ is an orthonormal system in $L^2([-\pi,\pi])$. In fact it is also complete, but the proof of its completeness is beyond the scope of this course. The general results about complete orthonormal systems in Hilbert space now yield **Theorem 1.** For any $f \in L^2([-\pi,\pi])$, denote $\langle f, e^{int} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{e^{imt}} dt = \hat{f}(n)$ for each $n \in \mathbb{Z}$. Then

(a)

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)|^2 dt = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$$

(b)

$$f = \sum_{n \in \mathbb{Z}} \hat{f}(n) e^{int}$$

where the convergence is in the norm of $L^2([-\pi,\pi])$.

(c) Given any sequence $\{a_n\}_{n\in\mathbb{Z}}$ satisfying $\sum_{n\in\mathbb{F}} |a_n|^2 < \infty$, there is a unique $f \in L^2([-\pi,\pi])$ such that $a_n = \hat{f}(n)$ for each $n \in \mathbb{Z}$.

(d) For any $f, g \in L^2([-\pi, \pi])$, we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)\overline{g(t)}dt = \sum_{n \in \mathbb{Z}} \widehat{f}(n)\overline{\widehat{g}(n)}.$$

This brings the saga to an end.

The proof is mostly trivial. We omit the proof, only to mention that to prove (c), by Corollary 1 we can first write $f = \sum_{n \in \mathbb{Z}} a_n e^{int}$, then by using Lemma 3 and the fact that $\{e^{int}\}_{n \in \mathbb{Z}}$ is complete, we can prove the uniqueness part.

Remark The above theorem shows that $L^2([-\pi,\pi])$ and $l^2(\mathbb{Z})$ can be "identified" in certain sense through the correspondence $f \longleftrightarrow \{\hat{f}(n)\}$, mathematically it is called an **isometry** but we will not get into the that.